
C H A P T E R 1

Hello NetKernel

Welcome. If you are reading this you've probably heard
NetKernelTM mentioned in some XML-related workshop, pretty
much like I did back in 2006. Or maybe you have heard about
Resource Oriented Computing (ROC)TM and want to see a
practical implementation. Or maybe ... Whatever your reasons
for reading it, this book intends to take your hand show you the
wonderful world of NetKernel1. Are you ready ?

Audience
This book is intented for beginning and intermediate ROC-ers2. There is a
learning curve to ROC and NetKernel and this book will help you along that
curve.

Conventions
The book was made with OpenOffice 3.2.1, all formats/fonts mentioned below
are available in that editor.

The standard font for this book is Verdana, 12pt, Black
Chapter titles are 18pt, Turquoise 6
Subtitels are 14pt, Turquoise 5
Headings are 12pt, Bold, Black

Operators (verbs indicating an action) in the text are underlined, followed by
an operand (the thing acted upon) in italic.

Push this
Shake that

The font for operating system output in this book is Courier New, 12pt,
instruction lines have a Grey (10%) background, the instructions themselves
are put in Bold.

your_user@ubuntumachine:~$ aptitude -vvvv moo
Okay, okay, if I give you an Easter Egg, will you go away?

your_user@ubuntumachine:~$ aptitude -vvvvv moo
All right, you win.

1 1060, NetKernel, Resource Oriented Computing, ROC are respectively registered trademark
and trademarks of 1060 Research Limited

2 Puns with ROC(ks) are encouraged in all use of NetKernel. It does make asking for a drink
with ice at a NetKernel convention a rather tricky thing to do though ...

 /----\
 -------/ \
 / \
 / |
 -----------------/ --------\
 --

your_user@ubuntumachine:~$ aptitude -vvvvvv moo
What is it? It's an elephant being eaten by a snake, of
course.

Content

Chapter 1 Hello NetKernel
In what remains of this chapter I'll walk you through the
NetKernel history, give you a 10000 feet overview of ROC and
tell you just why you should bother with NetKernel and ROC.

Chapter 2 Stacking the deck
Preparation is half the battle. In this chapter I'll make sure both
your environment and your brain are primed to ... roc-and-roll3.
You'll also make your first NetKernel application.

Chapter 3 Incision ... right here
In this chapter we'll disect your first NetKernel application. The
only thing we'll leave intact is the DPML-code which we'll discuss
in Chapter <dpml chapter number here/>. We'll also see some
common patterns and finish up by building your own NetKernel
Webserver.

Chapter 4 Hu mongo us fun
There's something new available on the web every day. How
does all this stuff integrate with NetKernel ? In this chapter we'll
design an interface for MongoDB4.

Chapter 5 DPML

Chapter 6 ...

3 I did warn you about the puns !
4 http://www.mongodb.org/

Content (continued)

Appendix A Getting and Installing NetKernel
In this appendix I show you how and where to download
NetKernel and how to do a basic install. The appendix concludes
with doing an Apposite update to make your installation current.

Appendix B Setting up your own Apposite Repository
Some NetKernel instances will not have access to the internet.
They will still require updates though. This appendix explains
how to set up your own Apposite Repository.

Appendix C Running NetKernel as a service / daemon started at boottime
A basic install is fine for a development workstation, but your
production servers will require NetKernel to start at boottime.
This appendix shows you how to accomplish that.

Appendix D Locking down your NetKernel instance (Linux specific)
The internet is a wonderful place. Quite a bit jungle-like, now I
think of it. In this appendix a couple of simple precautions will
teach you how to avoid being eaten while still enjoying the
wildlife (NetKernel).

Appendix E Version Control
Yes, you do want version control of your sources ! And no, we
are not going to have a discussion about that. This appendix
explains how to set one up.

Don't know much about history ...

1060 Research was founded as a spin-out of original research (codenamed
dexter) undertaken at Hewlett-Packard labs. The 1060 team created and
implemented the Resource Oriented ComputingTM model in what you and I
know as NetKernelTM. In the mean time this technology is more than 10 years
old and has proven itself in sectors ranging from Telecoms, Insurance, Banking
and Military.

At the time of writing this book (September 2010) my source at
Hewlett-Packard labs tells me that the current research – something
that can be used to automate your garden management (amongst
other things) – is codenamed dharma5. Now, aren't you glad you just
found out that bit of information ? Personally I just wonder if they
work alphabetically.

If you haven't lost your sense of humour by now, how is your
knowledge of Roman numerals6 ? Perfect ? Then try this :
X + M + L = ?

10000 feet view of Resource Oriented Computing

If you want to a more complete (and correct) explanation than you'll get here,
have a look at Introduction to Resource-Oriented Computing, part I, an
excellent document that you can find under the heading Technical Whitepapers
on http://www.1060research.com/netkernel/roc/. Be warned though that it is a
tough read and that intimate knowledge of both Plato and Jack and the
beanstalk are required.

Let me tell you what I think ROC is (after working on and off with it for +/- 4
years) :

1. Everything is a resource. That includes your code, my code, data on the
database on my workstation and data encrypted steganographically in an
image of the National Art Gallery in Kuala Lumpur.

2. Once you grasped 1. (and that may take a while) let go of worrying
about where and how those resources are implemented.

5 http://en.wikipedia.org/wiki/Dharma
6 http://en.wikipedia.org/wiki/Roman_numerals

http://www.1060research.com/netkernel/roc/

3. Instead, focus on what you want to do with the resources, doing that in
small simple services that you can string together to as complex a
system as you can imagine (and probably way beyond that).

4. Stand amazed at how your system scales in exactly the same way that
the internet scales.

Why bother ?

When I was in school (Anno Domini Nostri Iesu7 1992) training to become an
IT Bachelor, we got an introduction session on the NeXTSTEP platform. The
platform that was going to make us (IT professionals) obsolete within the next
couple of years. And after the impressive session most of us (including myself)
believed it.

18 years later I'm still in IT. People still use Cobol, PL1 and CICS (as they –
well, obviously not the same people ... I hope – did before I was born).
NeXTSTEP only survives in the Apple OS somewhere.

If you've been around in IT for a while, you'll have such a story of your own.
There's always the next best thing that will take away all the pain of software
development (the human factor mostly) completely. And managers will always
love it.

But if one really has to say what technology has worked in the last 15 years,
one would have to say ... the internet. It has grown beyond imagination.

ROCTM combines the core ideas of the internet, the core ideas of Unix8 and
REST9 into a new and potent whole :

From Unix - borrow the idea of using simple tools that share a common
interopable data model (e.g., awk, grep, sed, etc.) to build solutions.

From REST - address everything (resources, services and code) with a
URI to loosely couple the internals of your software making it as flexible
as the Web.

NetKernelTM brings all this to an infrastructure near you !

Don't take my word for it. In retrospect I'd have liked to hear the guy showing
us NeXTSTEP say that. In fact, our class did meet him again as a mime (doing
a robot-impersonation) on some IT gathering later that same year. It turned
out that he was out of a job only weeks after giving us the presentation.

As of Chapter 2 each chapter will contain a bit of ROC-talk (indicated by the
'Rolling Stones' image) and a lot of hands-on NetKernel-stuff you can try at
home. In fact, I'm counting on you to try it at home !

7 In
8 http://en.wikipedia.org/wiki/Unix
9 http://en.wikipedia.org/wiki/Representational_State_Transfer

C H A P T E R 2

Stacking the deck

Prerequisites

NetKernel
Installed and running. Appendix A explains how to accomplish
that.

A brain10

These come in all shapes and sizes. Mine – for example – is not special in any
way. Brain-flexibility is required though. ROC is not difficult, just different.
Remember that – contrary to common belief – new braincells can be added
and new pathways through your brain can be created. And after you've worked
with ROC for a while both those statements will become fact !

A texteditor
There are many good plaintext-editors. And if you've written any code at all
you'll probably have a favorite one. I personally use SciTE because it is
lightweight, portable and very customisable. In the documentation that comes
with your NetKernel instance (I'll show you where you can find that
documentation a bit further on), IntelliJ IDEA is suggested.

Stick with whatever makes you productive. If your editor has code-highlighting
for the most common stuff (xml, html, css, java, javascript, ...), you'll be fine.
Only if the default Windows notepad is your top-of-the-line texteditor I would
strongly suggest you to follow the above suggestion11.

10My brain related knowledge comes from http://pragprog.com/titles/ahptl/pragmatic-
thinking-and-learning, an excellent (very readable, even for the technically inclined) book
on the matter.

11No, I will not start a flame war over this. If you are happy with notepad, kudos to you !

http://www.jetbrains.com/idea/free_java_ide.html
http://www.scintilla.org/SciTE.html

Whenever you see the 'Rolling Rocks'-sign in the book we are
going to have a bit of ROC-talk. Don't worry, I'll try to keep it clear
and short at all times. Every sign will also be a link to the next
ROC-talk, so if you want to walk through all of them at once, you
can (in an electronic version of this book that is) ...

ROC has its own principles and terminology. This ROC-talk will cover the first
three (of seven) principles :

1. A resource is an abstract set of information
Example : There is a book called 'Hello NetKernel'.

2. Each resource may be identified by one or more logical identifiers
Example :
- The book 'Hello NetKernel' is the book refered to here.
- The book 'Hello NetKernel' is the book described here.
- The book 'Hello NetKernel' is the book I am writing right now.

3. A logical identifier may be resolved within an information context to
obtain a physical resource-representation
Example :
- As the odt-file I am editing right now.
- As the pdf-file you can read.
The verbs (editing and read) form the information context, the
hyperlinks are logical identifiers, what you get on screen (even if you
get an error, as you probably will in the case of the file, since that is
locally on my machine) is the physical resource-representation.

Now, that was not difficult at all, was it ? And we got some terminology done
as well, excellent. Do not worry if you can not place this information yet, you
soon will.

file:///D:/In%20Progress/hello_netkernel_nk4.odt
http://temp.1060research.com/2010/09/hello_netkernel_nk4.pdf
http://wiki.netkernel.org/wink/wiki/NetKernel/News/1/45/September_10th_2010
http://www.netkernel.org/forum/topic/741/1

Setup
We are going to dive straight in. Let us first have a look at what we've got and
explain a couple of things along the way.

Layout NK4 installation
In what follows I'm labeling the location of your NK4 installation as
[install]. I'm also going to use forward slash to indicate a directory. I
know this is different in Windows12, you'll soon notice however that
within NetKernel configuration files (regardless of the operating
system) the forward slash is used and I did not want a mix. So adjust
for Windows where necessary. I'm also going to call your running
NetKernel the [instance].

When you look into your [install] directory you'll see these subdirectories :
bin startup script and startup configuration files
etc [instance]-wide configuration files
javadoc generated documentation
lib [instance]-wide libraries
log loggings
modules13 the NetKernel batteries (applications and tools)

There are a couple of others. These are volatile directories for caching and for
the H214 databasefiles used by the [instance] itself.

[install]/bin
Only the scripts to manually start a NetKernel instance and the configuration
files containing the parameters for those scripts can be found here.

[install]/etc
There's some interesting stuff here. The kernel.properties file contains the
parameters that govern your NetKernel instance. Very interesting stuff, but do
not touch unless you have a very good reason (and know what you are doing).
Besides, you can change all of these parameters from the Backend GUI.

The modules.xml file contains which modules (applications, tools) get loaded
(and in which order). You will modify this file. Either manually or through the
Backend GUI, but this is where you will add your own modules. In case it was
not clear yet, you'll now – by looking at modules.xml – realize that NetKernel is
build up from modules that run ... in NetKernel.

12A functional guy in my company put in a request to our Windows System Administration
team to adjust all backward slashes to forward slashes. They forwarded the issue to
Microsoft Support. No answer has come from Redmond so far.

13Module is the generic name for application or tool within NetKernel
14http://www.h2database.com

[install]/javadoc
Statements :

1. NetKernel is developed in Java.
2. Java is one of the languages you can use to develop modules in

NetKernel.

Right, that's out of the way ! I'm by no means a Java-guru (I prefer Python,
sorry). The NetKernel developers used Java, the modules that make up
NetKernel are Java modules. These modules can generate javadocs that put
their documentation in the javadoc-directory. If you develop your own modules
for NetKernel in Java, so can they.

People are always giving me a hard time with the "What is
NetKernel ?"-question. "Is it an application-server ?", they ask. "Well,
no, not really", I answer. "O, then it is an alternative for Java.", they
retort and end the discussion ... (which should actually just start
then). For me this just proofs some people should stay as far away
from IT as possible.

[install]/lib
This directory contains the libraries used to boot the NetKernel instance itself.
Note that when I state [instance]-wide I mean you'll have a similar directory
for each of your own applications as well (application-wide in other words). The
libraries in [install]/lib provide the actual ROC-functionality.

[install]/log
Guess what, this directory contains the loggings of your NetKernel instance. No
need to study them here, the Backend GUI contains a very nice logviewer.

[install]/modules
It is very hip to say something is batteries included. Python seems to be.
Haskell too. I guess Ruby couldn't stay behind. But what does it mean ? What
does it mean to say NetKernel is batteries included ?

Well, while having the ROC-functionality at your fingertips is surely very nice, it
means absolutely nothing to me. I need documentation about it, I need to be
able to see it, I need to be able to use it. Those are the batteries ! And that is
what the [install]/modules directory contains, applications and tools that use
the ROC-functionality and open it up to a simple soul like me.

So, if I want to use Python to ROC in NetKernel, I can. Some Saxon for XML
processing ? No problem ! Ant ? Sure ! Those and many other things are
available ... Some are installed by default, others can be gotten from the
repositories.

[install]/project-modules
Is not in the list. Create it now. This is where you'll put your own applications.
Using project-modules as directory-name is not mandatory (you can choose
whatever you like but please do not put blanks in it), I'll stick with project-
modules for the rest of this book.

cd [install]
mkdir project-modules

Glossed over

You – readers of this book – are not stupid. You no doubt noticed that I glossed
over a couple of things :

1. I did not give my answer to the "What is NetKernel ?"-question.
2. I did not explain what ROC-functionality means.
3. I keep refering to wonderful stuff in the Backend GUI, but I do not show

any of it.
4. ...

The reason is that I want you to be able to do something (almost there)
before I get to page 100 or so. As for the answer to 1., one of the purposes of
this book is that you're able to formulate an answer to that yourself. So bear
with me, all will be explained.

Hammer Time – your first module

Directory
We are going to create a directory for your module underneath
[install]/project-modules. You could name this directory anything you like. I'm
going to follow the URN15 method used in the [install]/modules directory. Note
that for a directory or file, you can not use colons. We use points instead. So
these could be possible directory-names for the application :

urn.com.colruyt.tutorial.firstmodule-1.0.0
urn.org.tomgeudens.tutorial.firstmodule-1.0.0

I also add a version number in the directory name. This too is optional, just
makes it easier if I want to have two versions of the same module running side
by side.

15http://en.wikipedia.org/wiki/Uniform_Resource_Name

My employer would love for you all to use the first option whereas I would of
course love to become immortal by having a directory with my name in it on
your harddrive. But I'll stay modest and go with this directory name :

urn.org.netkernelbook.tutorial.firstmodule-1.0.0

Create the directory for your module in [install]/project-modules.

cd [install]/project-modules
mkdir urn.org.netkernelbook.tutorial.firstmodule-1.0.0

I'm not differentiating between Windows and Linux when stating the
commands, remember to use the non-superuser dexter though to
execute the commands on Linux.

Module definition
Every module has (must have) a module.xml file in the root of its directory.
Create [install]/project-modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/module.xml (with the texteditor of your choice).

And here's the content (don't worry about what it all means right now, we'll go
into exhaustive detail later on) :

<module version="2.0">

 <meta>
 <identity>
 <uri>urn:org:netkernelbook:tutorial:firstmodule</uri>
 <version>1.0.0</version>
 </identity>
 <info>
 <name>firstmodule</name>
 <description>Tutorial to create a first module</description>
 </info>
 </meta>

 <system>
 <dynamic />
 </system>

 <rootspace>

 <fileset>
 <regex>res:/etc/system/SimpleDynamicImportHook.xml</regex>
 </fileset>

 <mapper>

 <config>

 <endpoint>
 <grammar>res:/netkernelbook/firstmodule/hello</grammar>
 <request>
 <identifier>active:dpml</identifier>
 <argument name="operator">
 res:/resources/dpml/hello.dpml
 </argument>
 </request>
 </endpoint>

 </config>

 <space>
 <fileset>
 <private />
 <regex>res:/resources/.*</regex>
 </fileset>
 <fileset>
 <private />
 <regex>res:/etc/.*</regex>
 </fileset>
 <import>
 <private />
 <uri>urn:org:netkernel:lang:dpml</uri>
 </import>
 <import>
 <private />
 <uri>urn:org:netkernel:ext:layer1</uri>
 </import>
 </space>

 </mapper>

 </rootspace>

</module>

Dynamic Import
Again something we'll discuss in detail later, it basically means that we are
making our module accessible from outside (outside NetKernel itself that is, so
we can access it in our webbrowser).

Create directory [install]/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/etc

Remember that I described [install]/etc as the [instance]-wide directory for
configurations ? Typically every module has its own etc directory with module-
wide configurations as well.

Create directory [install]/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/etc/system

Create [install]/project-modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/etc/system/SimpleDynamicImportHook.xml

And here's the content:

<connection>
 <type>HTTPFulcrum</type>
</connection>

The hello endpoint
This is the actual program, written in DPML, NetKernel's own scripting
language. Whenever I can use DPML I will do so in this book. That way I avoid
discussion over which language is best as well as leveling the playingfield.

Create directory [install]/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/resources

Create directory [install]/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/resources/dpml

Create directory [install]/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/resources/html

Create [install]/project-modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/resources/dpml/hello.dpml

And here's the content :

<sequence >
 <request assignment="response">
 <identifier>res:/resources/html/hello.html</identifier>
 </request>
</sequence>

As you can see, the program uses another resource, which we haven't got yet,
so create [install]/project-modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/resources/html/hello.html

And here's the content :

<html>
 <head>
 <title>NetKernelbook First Module - Hello</title>
 </head>
 <body>
 <h1>NetKernelbook First Module - Hello</h1>
 <p>Your module has been sucessfuly generated and deployed.</p>
 </body>
</html>

Registering the module
NetKernel has to be made aware of our new module. The place to do that is in
[install]/etc/modules.xml

Add the following entry just before the </modules> endtag in
[install]/etc/modules.xml (entry is on one line, the split below is due to the
limited linesize in this book) :

<module runlevel="7">project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/</module>

Testing
NetKernel should have discovered your module now. To make sure it did :
- fire up your favorite webbrowser
- enter http://localhost:8080/netkernelbook/firstmodule/hello

Source Version Control
It does seem ridiculous to bring this up here, but this is a good point to set up
source version control. Every module you write – even one as small as this one
– should have it. If you are not familiar with it, Appendix E will guide you. If
you are ... use it.

Well done
You are probably not very impressed yet with the results. Rome was not build
in one chapter either and trust me, we've covered a lot of ground already.

Conclusion

Chapter 2 was aimed at you getting your first module up and running as
quickly as possible. Chapter 3 will take the scalpel to the same module and
explain it in both ROC-terms and technical-terms.

http://localhost:8080/netkernelbook/firstmodule/hello

C H A P T E R 3

Incision, right here

Prerequisites
Chapter 2 completed.

Inside module.xml
If you've been awake during the previous chapter, you
noticed that the module.xml file contains most of the
meat.

It does in fact have two – main – purposes :
1. Define your module
2. Define the ROC layout of your module

One is obvious, two is important. If your ROC layout is done well, putting the
rest of your module together will be easy (and short). So lets study it in detail.

Template
A simple template for module.xml might look like this :

<module version="2.0">

 <meta>
 <identity>
 <uri>urn:org:yourcompany:yourapplication:newmodule</uri>
 <version>0.0.1</version>
 </identity>
 <info>
 <name>New Module</name>
 <description>New Module Template</description>
 </info>
 </meta>

 <system>
 <dynamic />
 </system>

 <rootspace>
 </rootspace>

</module>

Having good templates available can seriously reduce your
development time. You do not need a fancy system to manage them
(some editors have one and if you feel comfortable with it, by all
means use it), a simple directory will do. Make sure to put them under
version control as well though !

The template contains nothing fancy.
• meta

Contains the description of your module.
Note the use of colons in the uri.

• system
With the dynamic-tag we indicate that any java-classfiles – within the
application - that change during the run of the NetKernel instance will be
unloaded and reloaded dynamically ...
Note that this is not necessary for the other supported languages since
those are not compiled and/or pre-loaded into the jvm and hence any
change will immediately be active.

• rootspace
Empty right now, this is where most of the action will take place.
Note that you can have multiple rootspaces in one module.xml. If you do
each will require its own unique uri :
<rootspace
uri="urn:org:yourcompany:yourapplication:newmodule:part1">
</rootspace>
<rootspace
uri="urn:org:yourcompany:yourapplication:newmodule:part2">
</rootspace>
Any other modules that use (part of) your module, will have to import
(we'll see that in a minute) the uri(s) of the relevant rootspace(s) rather
than the uri of the module.

Template filled for firstmodule

uri urn:org:netkernelbook:tutorial:firstmodule
version 1.0.0
name firstmodule
description Tutorial to create a first module

Rootspace
Within a rootspace we define a resource space.

Do not worry if the above diagram means very little yet. I'll explain everything
as we go along. Ignoring representations and prototypes for now, an endpoint
is a space element that provides a gateway between logical resources and
physical code. That makes sense yes ? This will make it even clearer ... from
the perspective of an endpoint, it participates in the two phases of request
processing:

• Request Resolution - an endpoint may be asked to resolve a request.
• Request Evaluation - a resolved endpoint is asked to create and return

a resource representation.

And to finish up defining a rootspace ... a rootspace is a top-level space that
can be imported into other spaces.

So, in conclusion, your module has to contain a rootspace (one or more). In
this rootspace you have the endpoints that define what your module will
handle and how it will handle it. If you want to use the endpoints of other
modules, you have to import the relevant rootspace. Vice versa, if other
modules want to use your endpoints, they have to import your rootspace.

Let this information slowly sink in your mind. If it doesn't make sense
yet, follow through the chapter, then come back and read the above
again.

Rootspace definition
NetKernel is very flexible and can be adapted to suit your needs. This flexibility
does have a downside for unexperienced users. There is – for example – no
single correct way to define your resource space (endpoints). It depends.

In order to address this issue, enter overlays. According to the definition, an
overlay is an endpoint that defines and manages a relationship between a host
space and a wrapped space.

If that made sense to you, congratulations, you may move on to Chapter 4 !
The rest of the readers can follow me as we'll step-by-step reproduce the
mapper definition of firstmodule.

Mapper template
<mapper>
 <config>
 <endpoint>
 <grammar />
 <request />
 </endpoint>
 </config>
 <space />
</mapper>

Needs some fleshing out, but otherwise complete. Let us start at the bottom
with the space-tag.

Mapper template space-tag - fileset
This is what you'll find in firstmodule
<mapper>
 <space>
 <fileset>
 <private />
 <regex>res:/resources/.*</regex>
 </fileset>
 <fileset>
 <private />
 <regex>res:/etc/.*</regex>
 </fileset>
 </space>
</mapper>

The definition for fileset will make this clear ... exposes physical resources
contained within a module's physical directory to the logical space. All exposed
files will be resolved using the generic res:/ URI scheme.
So, the resources and the etc directory within the module are accessible. For
whom ? Well, the private-tag indicates that they are only accessible by the
module itself.

Example – fileset
If at a certain point our module does the following resource request -
res:/resources/dpml/hello.dpml - then by defining the above filesets the
module knows that it can find the resource (a physical file in this case)
hello.dpml in the resources/dpml directory of the module itself.

Mapper template space-tag - import
This is what you'll find in firstmodule
<mapper>
 <space>
 <import>
 <private />
 <uri>urn:org:netkernel:lang:dpml</uri>
 </import>
 <import>
 <private />
 <uri>urn:org:netkernel:ext:layer1</uri>
 </import>
 </space>
</mapper>

Remember that we stated that a rootspace can be imported into another
module's space. Well, here we do this with
urn:org:netkernel:lang:dpml
urn:org:netkernel:ext:layer1

The rootspaces with those names are imported into our module. That means –
amongst other things – that we get access to the DPML-interpreter and can
write active:dpml requests. Yes, we get access to an execution environment,
remember, everything is a resource, and that includes physical files as well
as execution environments !

You might wonder what the layer1 is about. Well, that module provides a lot of
basic services in NetKernel (as well as active:java) and you'll see it imported in
practically every module.

The private-tag indicates once more that any imported functionalities are only
available for your module itself.

Mapper template space-tag – conclusion
With the space-tag we (as must be clear by now) defined where our module is
going to find its resources. In the big-words definition for an overlay we called
that the wrapped space.

Mapper template config-tag
In the config-tag we are going to define what our module is going to handle
and how. That is the host space.

Mapper template endpoint-tag
Within the config-tag we have one or more endpoints. Here's the one for
firstmodule
<endpoint>
 <grammar>res:/netkernelbook/firstmodule/hello</grammar>
 <request>
 <identifier>active:dpml</identifier>
 <argument name="operator">
 res:/resources/dpml/hello.dpml
 </argument>
 </request>
</endpoint>

As you can deduce, in a grammar-tag you define what is handled by the
endpoint. In this case it handles the exact request for resource
res:/netkernelbook/firstmodule/hello. That doesn't leave room for a lot. You
can make things a lot more interesting of course, which we'll do a bit further
down in this chapter.

The request-tag also speaks for itself. The above resource is going to be
resolved by doing an active:dpml (present in our wrapped space !) with the
operator-argument (= dpml program to be executed) coming from the
resource request for res:/resources/dpml/hello.dpml (present in our wrapped
space !).

Everything is a resource and all (!) NetKernel does is handle resource
requests. In firstmodule these don't go very deep, but I hope you still
get a feel of how deep this can go (as deep as you can imagine and
beyond).

I skipped something
I've gone through most of module.xml by now, but I did skip one thing. The
first thing in the rootspace of firstmodule is this
<fileset>
 <regex>res:/etc/system/SimpleDynamicImportHook.xml</regex>
</fileset>

And the contents of that local file are these
<connection>
 <type>HTTPFulcrum</type>
</connection>

Remember that we imported other rootspaces into our module ? And that it is
possible that other modules import ours ? Well, some modules can do the
latter thing (importing ours) automatically. That is called dynamic importing.

By exposing (see below) the SimpleDynamicImportHook.xml file, we tell those
modules that we are ready to be imported. Which modules ? Well, the ones
mentioned in the file (in this case HTTPFulcrum). Why ? Well, I doubt that if
you enter res:/netkernelbook/firstmodule/hello in your browser, your going to
have much success. You are going to enter something like
http://localhost:8080/netkernelbook/firstmodule/hello and on port 8080 the
HTTPFulcrum is listening and it will look at your http-request and see if there is
a module that can handle it. There is ... firstmodule can handle it, but only if
HTTPFulcrum knows about it.

A word on exposing
When I started explaining about the rootspace definition, I said that there's a
lot of ways to do so. And there is, actually, our firstmodule rootspace is not
only exposing res:/netkernelbook/firstmodule/hello, but also
res:/etc/system/SimpleDynamicImportHook.xml, by using a simple fileset-tag.

All right, that covers the firstmodule's module.xml file. Next on the menu is a
ROC-talk and we'll finish up this chapter by expanding firstmodule a bit and by
using NetKernel as a webserver.

http://localhost:8080/netkernelbook/firstmodule/hello

If you've followed (and understood) this chapter so far, the ROC
definitions should start to make sense. In this ROC-talk we'll cover
the remaining four principles.

4. Computation is the reification16 of a resource to a physical resource-
representation
Example :
- Opening this odt-file in Open Office
- Requesting this pdf-file in a webbrowser
The verbs (opening, requesting) are the computation, the hyperlinks
are logical identifiers, what you get on screen (even if you get an
error, as you probably will in the case of the file, since that is locally on
my machine) is the physical resource-representation.

5. Resource-respresentations are immutable
Example :
- I'd be very surprised if I opened the above file and found an
explanation of how to grow peas. So would you if you requested the
above url.
- As I update this book you will time to time get a newer version (=
another resource-representation) of the book when you request the
same url.

6. Transreption is the isomorphic17 lossless transformation of one physical
resource-representation to another
Example :
- D:\In Progress\hello_netkernel_nk4.odt
- http://temp.1060research.com/2010/09/hello_netkernel_nk4.pdf

7. Computational results are resources and are identified within the address
space
Example : In 'The Complete Works of Tom Geudens' (soon available in a
shop near you) you'll find the 'Hello NetKernel' book.

16 According to my dictionary this means bringing into being or turning concrete.
17 Again according to my dictionary this is either a difficult mathematical concept or just
means ... mapping

file:///D:/In%20Progress/hello_netkernel_nk4.odt
http://temp.1060research.com/2010/09/hello_netkernel_nk4.pdf

Firstmodule revisited
The possible actions with firstmodule were rather limited (there was only one
action). We are going to extend that.

Where to make the changes
If you did not set up version control (shame on you, you should) you can make
the changes in the current firstmodule directory (if you followed the book so
far that is urn.org.netkernelbook.tutorial.firstmodule-1.0.0 in [install]/project-
modules).

Otherwise, make a new release in your repository (1.0.1 for example) and
check it out to a new directory underneath project-modules. Like this for
example :

youruser@yourmachine:~$ svn copy \
file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src \
file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/release/1.0.1 \
-m "Create release 1.0.1"
Committed revision 8.

youruser@yourmachine:~$ svn checkout \
file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/release/1.0.1 \
/usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.1

Remember that you also have to change the entry for firstmodule in
[install]/etc/modules.xml if you want the new version to be the active one :

<module runlevel="7">project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.1/</module>

Modifications
There are a couple of ways to provide new functionality in firstmodule. We
could define a new rootspace. We could define a new entrypoint in the existing
mapper-overlay. We could do both. What we are going to do however is make
the grammar in the existing entrypoint somewhat more dynamic.

My goal is for firstmodule to handle all resource requests like
res:/netkernelbook/firstmodule/hello
res:/netkernelbook/firstmodule/goodbye
res:/netkernelbook/firstmodule/jimcarrey
and so on and the hello.dpml program should return the corresponding html-
resource (hello.html, goodbye.html, jimcarrey.html, ...).

State your goals upfront. Always ! In all the time I've worked with
NetKernel, I've never been able to state an impossible goal. Some of
them required asking others and redefining some of what I thought I
knew of NetKernel, but impossible ? No. So don't let your goals be
limited by what you (think you) know !

This is what the modified grammar could look like :

 <grammar>
 res:/netkernelbook/firstmodule/
 <group name="action">
 <regex>(hello|goodbye|jimcarrey)</regex>
 </group>
 </grammar>

The new thing here is the group-tag, which turns everything it matches/groups
(in this case the last part of the resource request) into a ... resource that we
can use in the request :

 <request>
 <identifier>active:dpml</identifier>
 <argument name="operator">
 res:/resources/dpml/hello.dpml
 </argument>
 <argument name="html">
 res:/resources/html/[[arg:action]].html
 </argument>
 </request>

As you can see we added one more argument in the request. It contains the
uri of the html-resource that we want to see. Since we have it as an argument,
hello.dpml no longer needs to hardcode it :

<sequence >
 <request assignment="response">
 <identifier>arg:html</identifier>
 </request>
</sequence>

As you can see, arguments passed to active:dpml can be used in the dpml
code with the arg: scheme as well.

All that is left to do is to provide two new html files in resources/html. Here's
goodbye.html :

<html>
 <head>
 <title>NetKernelbook First Module - Goodbye</title>
 </head>
 <body>
 <h1>NetKernelbook First Module - Goodbye</h1>
 <p>Your module has been sucessfuly generated and deployed.</p>
 </body>
</html>

And here's jimcarrey.html :

<html>
 <head>
 <title>NetKernelbook First Module - Jim Carrey</title>
 </head>
 <body>
 <h1>NetKernelbook First Module - Jim Carrey</h1>
 <p>And in case I do not see you any more ...
 good afternoon, good evening and goodbye !</p>
 </body>
</html>

And finally, here are the three possible outputs for valid requests to
firstmodule

Version Control (only for those that have it)
This is a good moment to commit your changes to the repository. Like this for
example :

youruser@yourmachine:~$ cd /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.1
youruser@yourmachine:~$ svn status
M module.xml
? resources/html/jimcarrey.html
? resources/html/goodbye.html
M resources/dpml/hello.dpml

youruser@yourmachine:~$ svn add \
 resources/html/jimcarrey.html resources/html/goodbye.html
A resources/html/jimcarrey.html
A resources/html/goodbye.html

youruser@yourmachine:~$ svn commit -m 'Release 1.0.1 complete'
Sending module.xml
Sending resources/dpml/hello.dpml
Adding resources/html/goodbye.html
Adding resources/html/jimcarrey.html
Transmitting file data
Committed revision 9.

Exercise
If I want to add a new html-resource, I have to modify the module.xml file.
That is not completely what I stated in my goal ! Modify the grammar so that
any html-resource that you put in resources/html can be shown by the
hello.dpml program.

A first pattern – Webserver
NetKernel can do anything you imagine, but most of the time you're not the
first person to think of a particular use18. A very common pattern is that of the
webserver.

Goal
I use ExtJS19 for most of my GUIs. You might use Dojo or JQuery or whatever,
my point is that we have a library of files that we want to turn into resources
and serve.

There is an extra requirement. Since I do not like to break what is working, I
have at any given time multiple versions of ExtJS in action.

Requests will look like this
res:/ExtJS-3.0.3/ext-all.js
res:/ExtJS-3.1.0/adapter/ext/ext-base.js
res:/ExtJS-3.3.0/plugins/uxmedia.js

If you want to be able to follow this example all the way, you can find the
relevant downloads at
http://www.sencha.com/products/js/thank-you.php?dl=extjs303
http://www.sencha.com/products/js/thank-you.php?dl=extjs310
http://www.sencha.com/products/js/thank-you.php?dl=extjs330

18My apologies for hurting your ego.
19http://www.sencha.com/products/js/

http://www.sencha.com/products/js/thank-you.php?dl=extjs330
http://www.sencha.com/products/js/thank-you.php?dl=extjs310
http://www.sencha.com/products/js/thank-you.php?dl=extjs330

New module
You know by now how to set up a new module. I'm going to use this uri

urn:org:netkernelbook:extjs:server

and the corresponding directory will be

[install]/project-modules/urn.org.netkernelbook.extjs.server-1.0.0

And you do have a question of course, so let me answer that first ...

Do I want version control for this ?
Yes, you do want external libraries under your own version control. The two
main reasons are

1. What's here and available on the internet today, might be gone
tomorrow. Do you want to be the one to explain that a complete
refactoring of your companies main application is necessary because you
can no longer find the relevant libraries ? I think not !

2. You might want to do some customisation. No library is perfect, maybe
there are community plugins available, ...

The best way to do this is to create the whole module as described below and
import the whole shebang into your repository (you'll see in a minute that the
module itself is very simple, there's no point in the initial trunk being empty).
All plugins and customisations can then be added through commits.

You might by now feel that I'm a bit fixated on version control, backup
and reproducibility of resources. Well, after having accidently dropped
(as in database drop) an archive of about 300.000 mails and
somewhat later sitting in on the meeting where the tape supplier
declares that the tape that should contain the only backup actually
contains debris ... your mind does wonderfuly get focused yes ...

The rootspace
This is the important part of the module.xml file for our extjs-server module

 <rootspace>

 <fileset>
 <regex>res:/etc/system/SimpleDynamicImportHook.xml</regex>
 </fileset>

 <fileset>
 <regex>res:/ExtJS-[0-9]\.[0-9]\.[0-9]/.*</regex>
 </fileset>

 </rootspace>

Yes, that is all. Like I said, very simple. We make the ExtJS files in our module
available and also open them up to the HTTPFulcrum. This is the structure of
our module :

The content of the ExtJS-x.x.x directories comes straight from the
corresponding zip-files and the SimpleDynamicImportHook.xml file is exactly
the same as in firstmodule.

Testing
http://localhost:8080/ExtJS-3.0.3/license.txt
http://localhost:8080/ExtJS-3.0.3/docs/welcome.html
http://localhost:8080/ExtJS-3.1.0/license.txt
http://localhost:8080/ExtJS-3.1.0/docs/welcome.html
http://localhost:8080/ExtJS-3.3.0/license.txt
http://localhost:8080/ExtJS-3.3.0/docs/welcome.html

There, that should be sufficient proof. It isn't you say ? You are right, lets
modify firstmodule a bit so we have something to show for !

http://localhost:8080/ExtJS-3.3.0/docs/welcome.html
http://localhost:8080/ExtJS-3.3.0/license.txt
http://localhost:8080/ExtJS-3.1.0/docs/welcome.html
http://localhost:8080/ExtJS-3.1.0/license.txt
http://localhost:8080/ExtJS-3.0.3/docs/welcome.html
http://localhost:8080/ExtJS-3.0.3/license.txt

Changing firstmodule again
You can choose for yourself if you are going to do this in release 1.0.0 or 1.0.1
or if you are going to make a new 1.0.2.

What we are going to do is change hello.html (present in both releases) so it
looks like this :

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <link
 href="http://localhost:8080/ExtJS-3.0.3/resources/css/ext-all-notheme.css"
 rel="stylesheet" type="text/css" />
 <link
 href="http://localhost:8080/ExtJS-3.0.3/resources/css/xtheme-blue.css"
 rel="stylesheet" type="text/css" />
 <title>NetKernelbook First Module - Hello</title>
 </head>

 <body>
 <h1>NetKernelbook First Module - Hello</h1>
 <p>Your module has been sucessfuly generated and deployed.</p>
 <script type="text/javascript"
 src="http://localhost:8080/ExtJS-3.0.3/adapter/ext/ext-base.js">
 /* <![CDATA[*/
 /*]]> */
 </script>
 <script type="text/javascript"
 src="http://localhost:8080/ExtJS-3.0.3/ext-all.js">
 /* <![CDATA[*/
 /*]]> */
 </script>
 <script type="text/javascript">
 /* <![CDATA[*/
 Ext.namespace('test');

 test.app = function() {
 // private space

 // public space
 return {
 init: function() {
 Ext.Msg.alert('ExtJS 3.0.3',
 'Framework has been installed correctly');
 }
 };
 }();
 /*]]> */
 </script>
 <script type="text/javascript">
 /* <![CDATA[*/
 Ext.onReady(test.app.init, test.app);
 /*]]> */
 </script>
 </body>
</html>

My apologies for reducing the fontsize on that, but it looked pretty bad
otherwise. Don't be daunted by this, we are including the main ExtJS
stylesheets, the main ExtJS javascriptfiles and I define one javascript function
which I then execute when the page is fully loaded.

When you now try http://localhost:8080/netkernelbook/firstmodule/hello, you
should see something similar to this

Wonderful, but ...
You'll agree with me that ExtJS is indeed being served by NetKernel. You'll also
agree with me that having to hardcode http://localhost:8080 before every
resource-request in the html is not very flexible.

There is a solution for that. Since hello.html is also a resource, we can have it
pre-processed by XRL. We'll check out the XML Recursion Language in detail
in another chapter, but we are going to make use of it now.

http://localhost:8080/netkernelbook/firstmodule/hello

First we import it in the space-tag of firstmodule's module.xml file

 <import>
 <private />
 <uri>urn:org:netkernel:lang:xrl</uri>
 </import>

And then we can modify hello.html again

<html xmlns:xrl="http://netkernel.org/xrl">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <link href="/ExtJS-3.0.3/resources/css/ext-all-notheme.css"
 xrl:resolve="href"
 rel="stylesheet" type="text/css" />
 <link href="/ExtJS-3.0.3/resources/css/xtheme-blue.css"
 xrl:resolve="href"
 rel="stylesheet" type="text/css" />
 <title>NetKernelbook First Module - Hello</title>
 </head>
 <body>
 <h1>NetKernelbook First Module - Hello</h1>
 <p>Your module has been sucessfuly generated and deployed.</p>
 <script type="text/javascript"
 src="/ExtJS-3.0.3/adapter/ext/ext-base.js"
 xrl:resolve="src">
 /* <![CDATA[*/
 /*]]> */
 </script>
 <script type="text/javascript" src="/ExtJS-3.0.3/ext-all.js"
 xrl:resolve="src">
 /* <![CDATA[*/
 /*]]> */
 </script>
 <script type="text/javascript">
 /* <![CDATA[*/
 Ext.namespace('test');

 test.app = function() {
 // private space

 // public space
 return {
 init: function() {
 Ext.Msg.alert('ExtJS 3.0.3',
 'Framework has been installed correctly');
 }
 };
 }();
 /*]]> */
 </script>
 <script type="text/javascript">
 /* <![CDATA[*/
 Ext.onReady(test.app.init, test.app);
 /*]]> */
 </script>
 </body>
</html>

Note the xrl:resolve tags and the difference in the href and src tags. Now, that
looks a whole lot better (more portable), does it not ?

Conclusion
In this chapter we cut out the heart and soul of firstmodule and it did have
some surprises in store for us. We talked about (root)spaces, endpoints,
requests and grammars (not necessarily in that order). Next we made
firstmodule a bit more flexible and we finished by using NetKernel as a
file-/webserver.

If you came out of this chapter with your head still on, you're now ready to do
some experimenting of your own. By all means do and have some fun while
you're at it ! The next chapter will be there, waiting for you when you come
back.

C H A P T E R 4

Humongous Fun

<chapter 4 text/>

A P P E N D I X A

Getting and Installing NetKernel

Prerequisites
To run NetKernel you must have a computer and operating system capable of
running Java 1.5 or 1.6. NetKernel is platform neutral and has been deployed
successfully on Windows 2000, Windows 7, Windows XP, Windows Vista,
Windows Server 2003, Apple Mac OS X, Linux (Redhat, Suse, Debian, Ubuntu)
and Solaris.

The above comes straight from the install notes. I just want to add that
although a JRE (java runtime environment) is sufficient to run NetKernel with
all its features, I strongly advise you to install a JDK on machines where you
do NetKernel development.

Download
This book deals with the (open source) NetKernel Standard Edition and the
versions for that can be found under http://download.netkernel.org/nkse/ :
- Select the download for the 4.1.x. version.
- Pick a mirror.
- Save the 1060-NetKernel-4.1.x.jar file to your system.
- While the download is running, read the install notes.

Installation
Installation is very easy and pretty much identical on any platform. Below
you'll find the transcripts of an installation on Windows 7 and Ubuntu 10.04
LTS - the Lucid Lynx.

Running the downloaded jar – Windows

First position yourself in the directory above the one where you want to install
NetKernel (I'm going to install in D:\NK4, so I position in D:, I also put the
downloaded jar there for ease of use).

C:\Users\your_user>d:
D:\>java -jar 1060-NetKernel-SE-4.1.1.jar
Expanding urn.com.ten60.core.boot-1.13.22
Expanding urn.com.ten60.core.cache.se-1.2.11
Expanding urn.com.ten60.core.layer0-1.31.57
Expanding urn.com.ten60.core.module.standard-1.20.29
Expanding urn.com.ten60.core.netkernel.api-4.1.5
Expanding urn.com.ten60.core.netkernel.impl-4.13.24
I 17:11:40 Kernel
Starting 1060-NetKernel-SE
...

http://download.netkernel.org/nkse/

I 17:11:45 Kernel NetKernel Ready, accepting requests...
I 17:11:45 ModuleManager System now at RunLevel [2]

* JAR BOOT NOTES
* ---------------
* NetKernel is now running an HTTP server on port 1060
*
* To start using NetKernel open a web browser
* and go to: http://localhost:1060/

Running the downloaded jar - Ubuntu
Starting the downloaded jar on Linux is exactly the same as on Windows, but
we are going to do a bit of preparation in advance, this will make things easier
later on.

your_user@ubuntumachine:~$ sudo groupadd --gid 1060 dexter
your_user@ubuntumachine:~$ sudo useradd --uid 1060 --gid 1060 -m \
 -d /home/dexter -s /bin/bash -c 'NetKernel software' dexter
your_user@ubuntumachine:~$ sudo passwd dexter
your_user@ubuntumachine:~$ sudo mkdir /usr/NK4
your_user@ubuntumachine:~$ sudo chown dexter:dexter /usr/NK4

You can of course pick your own groupname, username and directorynames,
the rest of this installation procedure will go with the values used above.

Change to the newly created user, position yourself in the directory above the
one where you want to install NetKernel and start the downloaded jar.

dexter@ubuntumachine:~$ cd /usr
dexter@ubuntumachine:/usr$ java -jar 1060-NetKernel-SE-4.1.1.jar
Expanding urn.com.ten60.core.boot-1.13.22
Expanding urn.com.ten60.core.cache.se-1.2.11
Expanding urn.com.ten60.core.layer0-1.31.57
Expanding urn.com.ten60.core.module.standard-1.20.29
Expanding urn.com.ten60.core.netkernel.api-4.1.5
Expanding urn.com.ten60.core.netkernel.impl-4.13.24
I 17:22:40 Kernel
Starting 1060-NetKernel-SE
...I 17:22:42 Kernel NetKernel Ready, accepting requests...
I 17:22:42 ModuleManager System now at RunLevel [2]

* JAR BOOT NOTES
* ---------------
* NetKernel is now running an HTTP server on port 1060
*
* To start using NetKernel open a web browser
* and go to: http://localhost:1060/

Verification – all environments
If all is well, you can now :
- fire up your favorite webbrowser
- enter http://localhost:1060

And you should get this screen :

If your machine has internet access you will get news items underneath
NetKernel News.

The NetKernel interface will perform well on any modern up-to-date
webbrowser.

Installation – all environments
By all means, browse through the tabs and check stuff (you probably did not
read that Readme first, did you ?). When you're ready for the installation to
disk, select the Install tab.

I do wonder what that option does. Lets find out and press it !

Do read the license you'll see next. This book is concerned only with the (open
source) NetKernel Standard Edition. If you cannot comply with the public
license terms you must obtain a commercial license from
www.1060research.com.

http://www.1060research.com/

All the earlier positioning pays of here, for by entering NK4 in the Target
Directory field the installation will go where I want it (as well on Windows as
on Linux).

Press Install ...

Verification – Windows
The following message will show :
NetKernel was successfully installed onto your filesystem at D:\\NK4

Check this visually, there should be five new subdirectories underneath
D:\NK4.

D:\NK4>dir
 Volume in drive D is xxxx
 Volume Serial Number is xxxx-xxxx

 Directory of D:\NK4

04/09/2010 21:18 <DIR> .
04/09/2010 21:18 <DIR> ..
04/09/2010 21:18 <DIR> bin
04/09/2010 21:18 <DIR> etc
04/09/2010 21:18 <DIR> lib
04/09/2010 21:18 <DIR> log
04/09/2010 21:18 <DIR> modules
 0 File(s) 0 bytes
 7 Dir(s) x bytes free

Verification – Ubuntu
The following message will show :
NetKernel was successfully installed onto your filesystem at /usr/NK4

Check this visually, there should be five new subdirectories underneath
/usr/NK4.

dexter@ubuntumachine:/usr/NK4$ ls -la
total 28
drwxr-xr-x 7 dexter dexter 4096 2010-09-04 21:16 .
drwxr-xr-x 14 root root 4096 2010-09-04 17:20 ..
drwxr-xr-x 2 dexter dexter 4096 2010-09-04 21:16 bin
drwxr-xr-x 4 dexter dexter 4096 2010-09-04 21:16 etc
drwxr-xr-x 4 dexter dexter 4096 2010-09-04 21:16 lib
drwxr-xr-x 2 dexter dexter 4096 2010-09-04 21:16 log
drwxr-xr-x 36 dexter dexter 4096 2010-09-04 21:16 modules

Stopping downloaded jar – all environments
You are now almost ready for your first run. Press CTRL-C in the window where
you are running the downloaded jar. This will stop the installation-run.

...
^CI 16:30:58 Kernel NetKernel Pausing, flushing pending
requests, new requests queued...
I 16:30:58 HTTPTranspor~ Decommissioning HTTP Transport
I 16:30:58 HTTPTranspor~ Graceful shutdown {}

First run from disk – Windows

C:\Users\your_user>d:
D:\>cd NK4
D:\NK4>bin\netkernel.bat
I 16:44:58 Kernel
Starting 1060-NetKernel-SE
Resource Oriented Computing Platform
Version 4.1.1
...
I 16:45:29 Kernel NetKernel Ready, accepting requests...
I 16:45:29 ModuleManager System now at RunLevel [7]
I 16:45:29 InitEndpoint Init completed - system at RunLevel [7]
I 16:45:29 CronTransport Added Job [Apposite Synchronize @ Every
3rd Day] of type [crontab]

First run from disk – Ubuntu

dexter@ubuntumachine:~$ cd /usr/NK4
dexter@ubuntumachine:~$ bin/netkernel.sh
I 17:40:15 Kernel
Starting 1060-NetKernel-SE
Resource Oriented Computing Platform
Version 4.1.1
...
I 17:41:08 Kernel NetKernel Ready, accepting requests...
I 17:41:08 ModuleManager System now at RunLevel [7]
I 17:41:08 InitEndpoint Init completed - system at RunLevel [7]
I 17:41:08 CronTransport Added Job [Apposite Synchronize @ Every
3rd Day] of type [crontab]

Verification – all environments
If all is well, you can now once again :
- fire up your favorite webbrowser
- enter http://localhost:1060

And you should get this screen :

The only visible difference with the NetKernel Management Console we saw
earlier is that the Install tab is no longer there.

Apposite – all environments
Before you do anything else, you should update the current NetKernel
modules, to make sure you have all security and other patches. NetKernel has
a Software Management System called Apposite to take care of this. In fact,
Apposite itself is managed and updated this way, as is every part of NetKernel.

The default Base URI for the Apposite repository is
http://apposite.netkernel.org/repo/. If your NetKernel instance does
not have access to the internet, you'll not be able to reach this. In that
case you should first set up your own. Appendix B explains how to do
this. Only then continue with the remainder of Appendix A.

Select the Apposite tab.

Packaging is discussed elsewhere in this book. Select and press Apposite.

You should see orange ! There should be updates available, very likely (you
can see this if you scroll down the page) for Apposite itself. If there are no
updates available at this point ... something went wrong in an earlier step.

The action to take suggests itself rather clearly ... press Select All Updates.

A Selections list will appear. You can see the list I get for version 4.1.1. above,
yours may differ. I do know that you immediately want to add other stuff
(Python for example) as well, but don't ! Take the logical next step, press
Apply Selections.

Be patient, depending on which repository you use this make take a minute or
so. Underneath the Selections list you'll get an update of what's going on.
When finished you'll see a Refresh button appear there ... like this :

Guess what you have to do next. That's right ... press Refresh. If all goes well
you should get the Apposite screen back, with all updated packages showing
their new version number and all orange gone !

Conclusion
Installing NetKernel is – considering what you get in return – pretty simple and
uniform across platforms. For a production system you might want to run
NetKernel as a service or a daemon that gets started at boottime. Appendix C
deals with setting that up.

A P P E N D I X B

Setting up your own Apposite Repository

Prerequisites
There is a bit of a 'chicken and the egg'-problem20 here. The reason you would
need your own Apposite Repository is that you do or will not allow your
NetKernel instance access to the internet. However, in order to set up your
own Apposite Repository, you will need access to the internet. No way around
it I'm afraid. It does however not have to be from the machine you run your
NetKernel instance on !

I'll discuss a setup via the rsync-utility on Windows 7 and Ubuntu 10.04
LTS - the Lucid Lynx. For Ubuntu this utility is present by default, for
Windows 7 we'll use the one available in the Cygwin package. Don't worry if
Cygwin means nothing to you, I'll discuss the setup for that as well.

In fact, that's what I'm going to do first ...

Yes, I do know that there are other rsync ports available for Windows.
Feel free to use them ... most of them are not (free to use that is).
Some of the others are limited to specific usages. Trust me, it will do
you no harm to have a Linux-like shell with lots of Linux-utilities
available on your Windows machine. You can thank me later !

Preparation

Getting Cygwin – Windows 7 only
You can get the Cygwin setup file at http://www.cygwin.com/setup.exe.
Download it. Note that not only the first install is done with this file, but also all
subsequent updates (or installation of new utilities you may require). So
download it to a place where you can find it again (I keep it on my desktop in
fact).

20That one has been solved by science, the chicken came first. Something to do with a certain
protein.

http://www.cygwin.com/setup.exe

Installing Cygwin – Windows 7 only
Start the dowloaded setup.exe.

Read the text (told you about keeping the setup.exe, didn't I ?)
Press Next

Select Install from Internet
Press Next

Enter the location and the users for Cygwin.
I entered D:\cygwin and selected the recommended user option.
Press Next.

Enter the location you want Cygwin to download its packages to
I entered D:\cygwin\downloads.
Press Next

I use a Direct Connection to the Internet, your connection settings may
differ ...
Press Next

Choose a mirror near you.
Press Next.

Finally we are getting to the packages (Linux utilities) that are going to be
installed. For the most part the defaults are fine, but there are two packages
that you want to select extra under the Net-heading (expand that heading and
click on the skip in front of the packages ... the skip will be replaced by a
version number) :
- openssh
- rsync

Press Next
Confirm that you want to select the packages that resolve the dependencies.
Press Next

The installation will now run for a bit ...

Select how you want to be able to reach Cygwin.
Press Finish

Congratulations ! You are now the proud owner of a quite decent Linux
environment on your Windows machine.

Non-root user – Ubuntu only
If the Linux machine for the Apposite Repository differs from the NetKernel
machine, you will benefit from creating the same non-root user we created for
the NetKernel machine.

your_user@ubuntumachine:~$ sudo groupadd --gid 1060 dexter
your_user@ubuntumachine:~$ sudo useradd --uid 1060 --gid 1060 -m \
 -d /home/dexter -s /bin/bash -c 'Apposite Repository' dexter
your_user@ubuntumachine:~$ sudo passwd dexter

Synchronization

Creating the repository – Windows 7
Create a directory to hold the repository:
C:\Users\your_user>mkdir d:\repo

Creating the repository – Ubuntu
Create a directory to hold the repository:
your_user@ubuntumachine:~$ sudo mkdir /repo
your_user@ubuntumachine:~$ sudo chown dexter:dexter /repo

Synchronizing the repository – Windows 7
Start your Cygwin shell (doubleclick the icon that was created on your
desktop).
your_user@windowshost ~
$ mkdir /repo
your_user@windowshost ~
$ mount d:/repo /repo
your_user@windowshost ~
$ rsync -rv rsync://apposite.netkernel.org/download/repo/ /repo/

If you are using a firewall (you should) it will now ask you if rsync is
allowed access to the Internet. Grant that access. A second later it will
come back to ask if rsync may act as a server. It may.

The synchronization will take a while, the repository is (September 2010)
about 250Mb.

...
packages/Y/
packages/Z/

sent 10335 bytes received 265302027 bytes 304082.94 bytes/sec
total size is 265230673 speedup is 1.00

your_user@windowshost ~
$ umount /repo
your_user@windowshost ~
$ rmdir /repo
your_user@windowshost ~
$ exit

Synchronizing the repository – Ubuntu
Log on to the system as the non-root user we created earlier.
dexter@ubuntumachine:~$ rsync -rv \
rsync://apposite.netkernel.org/download/repo/ /repo/

The synchronization will take a while, the repository is (September 2010)
about 250Mb.

...
packages/Y/
packages/Z/

sent 10335 bytes received 265302027 bytes 318311.17 bytes/sec
total size is 265230673 speedup is 1.00

Verification – Windows 7
You should see two directories in the repository.

C:\Users\your_user>dir d:\repo
 Volume in drive D is xxxx
 Volume Serial Number is xxxx-xxxx

 Directory of d:\repo

09/09/2010 21:17 <DIR> .
09/09/2010 21:17 <DIR> ..
09/09/2010 21:17 <DIR> netkernel
09/09/2010 21:17 <DIR> packages
 0 File(s) 0 bytes
 4 Dir(s) x bytes free

Verification – Ubuntu
You should see two directories in the repository.

dexter@ubuntumachine:~$ ls -la /repo
total 16
drwxr-xr-x 4 dexter dexter 4096 2010-09-09 21:31 .
drwxr-xr-x 23 root root 4096 2010-09-09 21:06 ..
drwxr-xr-x 3 dexter dexter 4096 2010-09-09 21:31 netkernel
drwxr-xr-x 38 dexter dexter 4096 2010-09-09 21:31 packages

Use

There are several ways you can go about this. You can serve the Apposite
Repository to the NetKernel instance(s) through a webserver. In Chapter 4 we
do exactly that when I show how you can use NetKernel as a webserver.

Another option is to map the Apposite Repository over your internal network to
the NetKernel instance(s). Windows has several options for just that and with
Samba21 you can easily map a Linux directory to a Windows machine (the
other way around remains a tricky thing though).

For the rest of this Appendix I assume that you have manually copied the
Apposite Repository to the machine that is running the NetKernel instance.

Whatever option you take, remember to frequently resynchronize with the
central repository on the internet ! Once a month for example will not hurt at
all.

Automate this task or have it automated. It is all very well to be closed
of from the evil internet, and no, you do not always need the latest
and the greatest, but you do need security patches and the occasional
new functionality. If you have to do it manually you'll forget after a
while.

Activating your personal Apposite Repository – Windows 7
So, the assumptions are as follows :

• You are running the NetKernel instance on this machine.
• You've copied the synchronized Apposite Repository to this machine, in

my case that is to D:\repo.

Navigate your browser to the NetKernel Apposite screen (http://localhost:1060
and so on, remember ?).
Press the Admin button.
Edit the Base URI of the repository so the screen looks like this :

21http://www.samba.org

Yes, the Base URI is now file:///D:/repo/. Windows loves slashes !
Make sure to test the connection !

Activating your personal Apposite Repository – Ubuntu
So, the assumptions are as follows :

• You are running the NetKernel instance on this machine.
• You've copied the synchronized Apposite Repository to this machine, in

my case that is to /repo.

Navigate your browser to the NetKernel Apposite screen (http://localhost:1060
and so on, remember ?).
Press the Admin button.
Edit the Base URI of the repository so the screen looks like this :

So, the Base URI is now file:/repo/.
Make sure to test the connection !

Conclusion

Setting up your own Apposite Repository is not hard at all. I would even
dare to say it is an advisable thing to do :

• Your security team – if you have one – will be pleased.
• If you have multiple NetKernel instances running, your updates will be

much swifter from a local (local as in 'on your local network') repository.

However, I would also advise to :
• Automate the synchronization with the official repository.
• Update your instances frequently.

One more thing to note ... the packages in a local repository are no less secure
than those on the official repository. I quote :

The public apposite repository only has signed official releases of 1060
authorized packages. Both the individual packages and the complete
repository metadata are signed. When you have a local copy inside your
firewall the NKSE apposite client still performs full repository and
package authentication and verification before permitting anything from
the the mirror to be installed. So even though the library is local you can
still treat it as the authentic trustworthy source of NKSE libraries and
updates.

And that's all I have to say about that.

A P P E N D I X C

Running NetKernel as a service / daemon started at
boottime

Cover Story
For servers this is expected behavior, but imagine this : "You get up in the
morning, you boot your desktop/laptop at home22 and NetKernel is
automatically started. Bliss.".

As you probably know, attaining the state of bliss is (in most religions) not one
of the lighter matters. However, Peter Rodgers23 has provided all that you
require to run NetKernel as a service/daemon (on your server or on your home
desktop) right here :
http://www.netkernel.org/forum/topic/649/1

If you feel comfortable with the instructions mentioned in that post, by all
means follow them and ignore the rest of this Appendix. I'm going to do almost
the same (you'll have to read further to see where I take a different
approach ... muhahaha24).

Note that I only vouch for the platforms that I tested the procedures on. At
this time those are Windows 7 and Ubuntu 10.04 LTS - the Lucid Lynx.
That means they will probably work on most current Windows platforms and
Linux platforms. If you have been able to test on another platform (and want
an honorable mention), let me know !

Preparation
Getting and installing YAJSW – Windows 7 only
No, I'm not using the Tanuki wrapper which you can find at
http://wrapper.tanukisoftware.com and that is used in Peters post. Do not get
me wrong, Tanuki is the authority on this task and their Community Edition is
excellent. I was however very sorry to read this :

Release footnotes:
*1: 64-bit Windows versions of the Java Service Wrapper are not
currently being made available in the Community Edition.

22If this is indeed the first thing you do after getting up (it is for me), get a life ... and tell me
where you found one !

23http://www.1060research.com/company/management/, Peter is the guy at the top ...
24My 'evil laugh' imitation.

http://wrapper.tanukisoftware.com/
http://www.netkernel.org/forum/topic/649/1

Very strange because the Linux 64-bit version is available. However, it does
disqualify Tanuki for the time being. Somebody used the force and read the
Tanuki-source however and the result (Yet Another Java Service Wrapper) can
be found at http://sourceforge.net/projects/yajsw/files/.

Download the zip file from there.
At this moment that is yajsw-beta-10.3.zip, your version may be different.
Unpack the zip file into a directory of your choice, in my case D:\yajsw.

Modifying YAJSW – Windows 7 only
In order to make YAJSW a bit more flexible we are going to alter the bat-files a
bit. You can find those in the ... you guessed it ... bat-subdirectory, in my case
D:\yajsw\bat.

Edit setenv.bat
...
rem configuration file used by all bat files
IF [%1]==[] (
set conf_file="%wrapper_home%/conf/wrapper.conf"
) ELSE (
set conf_file="%1"
)
...

Edit installService.bat
call setenv.bat %1
%wrapper_bat% -i %conf_file%
pause

Edit startService.bat
call setenv.bat %1
%wrapper_bat% -t %conf_file%
pause

Edit stopService.bat
call setenv.bat %1
%wrapper_bat% -p %conf_file%
pause

Edit queryService.bat
call setenv.bat %1
%wrapper_bat% -q %conf_file%
pause

http://sourceforge.net/projects/yajsw/files/

Edit uninstallService.bat
call setenv.bat %1
%wrapper_bat% -r %conf_file%
pause

Getting the netkerneld script – Ubuntu only
You can use the location mentioned in the post for this, but actually you have
the script on your system already. That is, if you kept the original jar-file you
used to install NetKernel with.

Did you know that any jar-file – 1060-NetKernel-SE-4.1.1.jar in my case –
is actually a zip-file ? Rename a copy of the .jar-file to a .zip-file and unzip it
(in a save location, you do not want to mess up your NetKernel install in this
way).

The netkerneld script can be found in the bin-directory in that save location.

Use

Making the wrapper configuration for YAJSW – Windows 7 only
The YAJSW scripts expect a configuration file. You can put this configuration file
(now that we've made the scripts somewhat more flexible) in NetKernels main
etc-directory. In my case the file is D:\NK4\etc\wrapper.netkernel.conf
and it contains the following (some lines are split due to the limitation of the
linesize, but these are all single line definitions !) :

wrapper.java.command=java
wrapper.working.dir=D:\\\\NK4
wrapper.java.app.mainclass=BootLoader
wrapper.console.loglevel=INFO
wrapper.console.title=NetKernel
wrapper.ntservice.name=NetKernel
wrapper.ntservice.displayname=NetKernel
wrapper.ntservice.description=NetKernel
wrapper.java.classpath.1 =
D:\\\\NK4\\lib\\urn.com.ten60.core.boot-1.13.22.jar
wrapper.app.parameter.1 = D:\\\\NK4
wrapper.java.additional.1 = -Xmx128m
wrapper.java.additional.2 = -Xms128m
wrapper.java.additional.2 = -XX:SoftRefLRUPolicyMSPerMB=100
wrapper.java.additional.3 =
-Djava.protocol.handler.pkgs=org.ten60.netkernel.protocolhandler
wrapper.java.additional.4 =
-Dsun.net.client.defaultReadTimeout=20000
wrapper.java.additional.5 =
-Dsun.net.client.defaultConnectTimeout=20000
wrapper.logfile =

You should of course alter this according to your installation !

This is little more than you'll also find in the normal netkernel.bat startscript.
If you're interested in knowing each and every possible parameter, check out :
http://yajsw.sourceforge.net/YAJSW Configuration Parameters.html

I'm not quite happy with so many hardcoded parameters. I envision
one extra step to generate this configuration file based on the
available NK4 installation information.

Install and start the NetKernel service – Windows 7 only
You are now ready to install the service. There is however one more thing to
take into account. Exactly that in fact. The scripts have to run with
Administrator permissions. On Windows 7 there are several ways to accomplish
this (I changed the property of the Command Prompt program to "Run As
Administrator" ... now I just have to remember to turn it off again), just
Google for a solution and you'll come up with one that suits you.

Nagivate to the YAJSW bat-directory
C:\Users\your_user>d:
D:\>cd yajsw\bat
D:\yajsw>

Install the NetKernel service
D:\yajsw\bat>installService.bat D:\NK4\etc\wrapper.netkernel.conf
D:\yajsw\bat>call setenv.bat D:\NK4\etc\wrapper.netkernel.conf
"java" -Xmx30m -jar "d:\yajsw\bat\/../wrapper.jar" -i
"D:\NK4\etc\wrapper.netkernel.conf"
17-Sep-2010 15:26:21 org.apache.commons.vfs.VfsLog info
INFO: Using "C:\Users\YourUser\AppData\Local\Temp\vfs_cache" as
temporary files store.
Service NetKernel installed

That was easy, was it not ? You still have to start the service though ...
D:\yajsw\bat>startService.bat D:\NK4\etc\wrapper.netkernel.conf
D:\yajsw\bat>call setenv.bat D:\NK4\etc\wrapper.netkernel.conf
"java" -Xmx30m -jar "d:\yajsw\bat\/../wrapper.jar" -t
"D:\NK4\etc\wrapper.netkernel.conf"
17-Sep-2010 15:39:34 org.apache.commons.vfs.VfsLog info
INFO: Using "C:\Users\YourUser\AppData\Local\Temp\vfs_cache" as
temporary files store.
service started

http://yajsw.sourceforge.net/YAJSW%20Configuration%20Parameters.html

And thats it. The NetKernel service will be restarted when you reboot your
machine.

Modify and install the netkerneld script – Ubuntu only
Note

• You'll require superuser abilities to do the installation of the script.
• The wget-utility is required. Most Linux/Unix systems have this, if yours

does not, install it first

Before we do anything else with the script, we're first going to make a few
small adjustments.

Verify that the parameters at the top are correct
HOMEDIR=/usr/NK4
NK_USER=dexter
APPNAME=NetKernel

#User Editable variables
STARTGREPPID="ten60.pid=1" #Must match the ten60.pid value
set in the netkernel.sh script
BACKENDPORT="1060" #HTTP port of backend fulcrum

Comment out this instruction (just put a # in front of it) in the script
chown -R $NK_USER $HOMEDIR

It is an understandable but dangerous instruction. I personally prefer the
daemon to fail at startup because a certain file suddenly and magically (yeah,
right) has the wrong ownership. Maybe you prefer a flawless startup.

Quid Pro Quo
Because NetKernel is now wrapped in a
service, you should no longer shut it down
from the Backend GUI. You would shut
down NetKernel that way, but you would not
stop the service. That's not good.

So, always go through the Windows
Services panel or use the – other – scripts
in the YAJSW bat-directory :
stopService.bat [NetKernel config]
queryService.bat [NetKernel config]
uninstallService.bat [NetKernel config]

Now, we are ready to do the install. Move the netkerneld script from whereever
you got it to /etc/init.d/ directory.

Change the ownership and the permissions of the script
your_user@ubuntumachine:~$ cd /etc/init.d
your_user@ubuntumachine:/etc/init.d$ sudo chown root:root
netkerneld
your_user@ubuntumachine:/etc/init.d$ sudo chmod 755 netkerneld

Verify if the daemon works
your_user@ubuntumachine:/etc/init.d$ sudo service netkerneld
Usage: /etc/init.d/netkerneld {start|stop|reboot|restart|status|
kill}

The next step is to link the daemon into the startup and shutdown of the
machine. On Ubuntu this is very easy :
your_user@ubuntumachine:/etc/init.d$ sudo update-rc.d netkerneld
defaults
update-rc.d: warning: /etc/init.d/netkerneld missing LSB
information
update-rc.d: see <http://wiki.debian.org/LSBInitScripts>
 Adding system startup for /etc/init.d/netkerneld ...
 /etc/rc0.d/K20netkerneld -> ../init.d/netkerneld
 /etc/rc1.d/K20netkerneld -> ../init.d/netkerneld
 /etc/rc6.d/K20netkerneld -> ../init.d/netkerneld
 /etc/rc2.d/S20netkerneld -> ../init.d/netkerneld
 /etc/rc3.d/S20netkerneld -> ../init.d/netkerneld
 /etc/rc4.d/S20netkerneld -> ../init.d/netkerneld
 /etc/rc5.d/S20netkerneld -> ../init.d/netkerneld

You may safely ignore the LSB warning (unless you are a Debian purist, in
which case you'll have rewritten the netkerneld script completely already).

Most Linux/Unix systems have these runlevels, so even if they do not have the
update-rc.d tool, you can make the links yourself, for example :

your_user@ubuntumachine: $ ln -sf /etc/init.d/netkerneld
/etc/rc0.d/K20netkerneld

All that remains now is to start the daemon. You can do that by rebooting the
machine or by starting the service yourself :
your_user@ubuntumachine:/etc/init.d$ sudo service netkerneld start

Verification – all environments
If all is well, you can now :
- fire up your favorite webbrowser
- enter http://localhost:1060

It pays to check that all works as expected. So do reboot your machines to see
NetKernel rise and shine again !

A P P E N D I X D

Locking down your NetKernel instance

Prerequisites
<to be continued/>

A P P E N D I X E

Version Control

Raison d'être25

Statements
Backups protect you against faulty hardware.
Version control protects you against faulty developers.

Discussion
Most people will underscribe the two statements. We all know why the
Challenger crashed26, and we all know that the I in RAID27 stands for
Inexpensive. And you might not believe this, but take the word of an ex-
storage manager (me), the disks in your home pc are exactly the same ones
that you can find in those very expensive storage-arrays from EMC2, Hitachi,
HP, IBM ... Exactly the same (even interchangeable if you replace the casing).
Did you ever wonder why those arrays have upto 10 spare disks inside and
why your company had to install a revolving door (and issue an access-at-all-
times badge) for the storage technician replacing faulty disks ?

And yet, how many of you have a decent (regular, incremental) backup of their
home pc ? It does – in this digital era - contain all photographs of your loved
ones, your tax forms, your bank statements, your ...
Are those not important then ?

And yet, we all know that the better class of developer sometimes likes to ride
his/her horse tangent of into some unknown direction. This is allowed (and
often encouraged in the more successful companies, because although 9/10 it
will be a useless exercise, the 1/10 pays the whole company for a year), but is
it not important to be able to quickly revert back to the last working code ?

Conclusion
Backups and version control are necessary. This appendix will focus on version
control (with Subversion) and explain how to make a safe backup of the
version control directories. How frequently you make that backup and what
you do with the resulting backupset is your choice. I hear people tell it is a
choice between safety and paranoia. Tell that to the Challenger guys ...

25Reason for existence
26http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster
27http://en.wikipedia.org/wiki/RAID

Preparation

Why Subversion28 ?
I'm a Git29 (man) myself and I've worked with CVS30 and RCS31 on Windows,
HP/UX and Linux. A version control tool is however just that, a tool. And a tool
must fit the job at hand. In the NetKernel News issue of September 24th
201032, Peter Rodgers explains why he feels Subversion fits the job for the
1060-team and why Git would probably not fit .

Besides being correct – insofar I can tell – that is couragous. Git is hot. Can
you see the headline : "Good enough for Linus Torvalds, but not for Peter
Rodgers !?" ? Luckily Linus would be the first to follow Peters reasoning.

So do I. And although Git would probably fit the – much simpler
 (as compared to the 1060-team system) – version control that I'm going to
explain further on in this appendix, I'm going to use Subversion as well (and
follow along in the structure Peter explains).

Installation
This is not an easy appendix and in order not to break the flow I'm not going
to mix instructions for two operating systems. So I'm going to assume you use
Cygwin on your Windows system and install Subversion there (it is under the
Devel-heading). Appendix B explains how to setup Cygwin.

The only difference between the instructions will be the mounting and
unmounting of the Windows drives on and off a Cygwin-directory. I'll
mark these instructions as Cygwin-only.

If you have a Unix/Linux system it will probably have subversion installed
already. If not you can find a package for your flavor at
http://subversion.apache.org/packages.html.

For your understanding
• There is a book about Subversion available online at http://svnbook.red-

bean.com. My goal is to walk you through some basics that will enable
you to have source version control for NetKernel projects, not to better
that book.

• I will describe a manual process. If (!) there is enough interest I will do
an advanced add-on to this book and build a completely automated
version control system/application for NKSE in there.

• I will work with a local repository. The Subversion book describes how to
set up remote repositories.

28http://subversion.apache.org//
29http://git-scm.com/
30http://www.nongnu.org/cvs/
31http://www.cs.purdue.edu/homes/trinkle/RCS/
32http://wiki.netkernel.org/wink/wiki/NetKernel/News/1/47/September_24th_2010

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/
http://subversion.apache.org/packages.html

Basic Usage
At last. My apologies for the long-winded introduction to this Appendix. Version
Control is one of those topics (backup, disaster-recovery and security are other
examples) that many consider just overhead.

Setting up the repository
This is the heart of your system. Create a location for it. I'll go with /svn for
the remainder of this Appendix (on Windows I created d:\svn, you'll see in a
second how I map that).

Create an empty repository in that location.
youruser@yourmachine:~$ mkdir /svn # Cygwin only
youruser@yourmachine:~$ mount d:/svn /svn # Cygwin only
youruser@yourmachine:~$ svnadmin create /svn

Now, that was not hard, was it ?

Check the repository.
youruser@yourmachine:~$ ls /svn
README.txt conf db format hooks locks

youruser@yourmachine:~$ cat /svn/README.txt
This is a Subversion repository; use the 'svnadmin' tool to
examine it. Do not add, delete, or modify files here unless you
know how to avoid corrupting the repository.

Visit http://subversion.apache.org/ for more information.

Let me repeat that. Unless you know what you are doing, you should not (ever
have to) touch the repository-directory or its contents !

umount /svn # Cygwin only

Layout module in the repository
Lets look at our firstmodule (from Chapter 2). The directory structure (in the
repository - do not panic, I repeat - in the repository !) might look like this :

project-modules
 urn.org.netkernelbook.tutorial.firstmodule
 trunk
 src
 release
 1.0.0
 <other_release/>
 branch
 my_latest_experiment
 <other_branch/>
 <other_module/>

Underneath trunk/src we find the stuff we want every new release and every
new branch to contain :

etc
 system
 SimpleDynamicImportHook.xml
resources
 dpml
 html
module.xml

Underneath release we will find all our versions. Each version starts out with
what is in trunk/src and adds (and modifies) onto that :

1.0.0
 etc
 system
 SimpleDynamicImportHook.xml
 resources
 dpml
 hello.dpml
 html
 hello.html
 module.xml

1.0.1
 etc
 system
 SimpleDynamicImportHook.xml
 lib
 somelibrary.jar
 resources
 dpml
 hello.dpml # Has been modified to use the library
 html
 hello.html
 module.xml # Has been modified to use the library

A branch will be like a release, but is less official. Any experiment with the
module can warrant a new branch.

my_briljant_experiment
 etc
 system
 SimpleDynamicImportHook.xml
 resources
 dpml
 briljant.dpml
 html
 briljant.html
 module.xml # Has been modified to use the briljant dpml

So with trunk, release and branch you can cover most (if not all) of your
needs. Note that a trunk can be updated with a the contents of a release or a
branch if you feel like it, so changing the starting point for new
releases/branches is possible (and I'll explain how to do that a bit further
down).

Initial load of the repository
Create a project-modules directory somewhere. Do not use the project-
modules directory underneath your NetKernel installation for this. I created
one in my home directory :
youruser@yourmachine:~$ pwd
/home/youruser

Make sure the repository is available :
youruser@yourmachine:~$ mount d:/svn /svn # Cygwin only
youruser@yourmachine:~$ ls /svn
README.txt conf db format hooks locks

Import project-modules into the repository :
youruser@yourmachine:~$ svn import \
 /home/youruser/project-modules \
 file:///svn/project-modules -m "Initial Import"
Committed revision 1.

Congratulations, you've just started using Subversion !
Verify the repository :
youruser@yourmachine:~$ svnlook tree /svn
/
 project-modules/

Not a lot in there yet. But we'll soon change that !

youruser@yourmachine:~$ umount /svn # Cygwin only

You could now also remove the selfmade project-modules directory, but I
suggest you keep it and use it to import modules (as I'll show in the next
point).

Creating a module in the repository
Typically you do this before you create the module in NetKernel. Yes, I know
we've already created our firstmodule (unless you started with all the
Appendixes first ... not very likely). No worries, you'll be able to put the files in
the repository !

But let us assume for a moment that we are just starting out with firstmodule.
What we want to do then is create this structure in the repository :

project-modules
 urn.org.netkernelbook.tutorial.firstmodule
 trunk
 src
 etc
 resources
 module.xml
 release
 branch

Well, do so. Not in the repository and not in the NetKernel project-modules
directory but in a place of your own choosing (I suggest underneath the
selfmade project-modules) :

youruser@yourmachine:~$ mount d:/svn /svn # Cygwin only
youruser@yourmachine:~$ pwd
/home/youruser
youruser@yourmachine:~$ cd project-modules
youruser@yourmachine:~$ mkdir \
 urn.org.netkernelbook.tutorial.firstmodule
youruser@yourmachine:~$ cd \
 urn.org.netkernelbook.tutorial.firstmodule
youruser@yourmachine:~$ mkdir -p trunk/src/etc/system \
 trunk/src/resources \
 release \
 branch
youruser@yourmachine:~$ touch \
 trunk/src/etc/system/SimpleDynamicImportHook.xml
youruser@yourmachine:~$ touch trunk/src/module.xml

If you want to, you may already fill module.xml. And
SimpleDynamicImportHook.xml. Those two files are unlikely to change much in
the lifetime of a module and thus belong completed in the trunk.

Import urn.org.netkernelbook.tutorial.firstmodule into the repository
(command lines run until the \, they are not split at the – of project-modules,
that's just the way the editor handles the limited linesize) :

youruser@yourmachine:~$ svn import \
 /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule \
 file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule \
 -m "Create firstmodule"
Adding /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/release
Adding /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk
Adding /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src
Adding /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src/modul
e.xml
Adding /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src/resou
rces
Adding /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src/etc
Adding /home/youruser/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src/etc/s
ystem
Adding /home/youruser/project
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src/etc/s
ystem/SimpleDynamicImportHook.xml
Adding /home/youruser/project
modules/urn.org.netkernelbook.tutorial.firstmodule/branch

Committed revision 2.

Verify the repository :
youruser@yourmachine:~$ svnlook tree /svn
/
 project-modules/
 urn.org.netkernelbook.tutorial.firstmodule/
 release/
 trunk/
 src/
 module.xml
 resources/
 etc/
 system/
 SimpleDynamicImportHook.xml
 branch/

Aha, now we are getting somewhere. And yes, I do know what remark you
want to make by now (and if not, you will in a minute or so). Hold your water
for bit, I'll answer before we are through with this appendix !

youruser@yourmachine:~$ umount /svn # Cygwin only

You may now safely remove the selfmade firstmodule directory. I suggest you
keep the project-modules directory, so you have a location to create the
repository-structure for future modules.

Creating a module-release in the repository
With the trunk nicely filled up it is time to start working on the first release of
our module. This is a simple copy operation in the repository. I'm going to use
the standard major.minor.revision numbering.

Make a repository copy of trunc/src to release/1.0.0
youruser@yourmachine:~$ mount d:/svn /svn # Cygwin only
youruser@yourmachine:~$ svn copy \
 file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src \
 file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/release/1.0.0
-m "Create release 1.0.0"
Committed revision 3.

Verify the repository :
youruser@yourmachine:~$ svnlook tree /svn
/
 project-modules/
 urn.org.netkernelbook.tutorial.firstmodule/
 release/
 1.0.0/
 module.xml
 resources/
 etc/
 system/
 SimpleDynamicImportHook.xml
 trunk/
 src/
 module.xml
 resources/
 etc/
 system/
 SimpleDynamicImportHook.xml
 branch/

That was easy was it not ? Yes, yes, I do know what you want to say. Let us
clear the next step first and I'll answer.

youruser@yourmachine:~$ umount /svn # Cygwin only

Checking out a working-copy of the module-release
In this step we are actually going to do something in the NK4 project-modules
directory, for that is where our working-copy is going to live. I'm going to
assume your NK4 installation lives at /usr/NK4, alter the instructions
accordingly if yours lives someplace else.

If you already created firstmodule in Chapter 2, move the
urn.org.netkernelbook.tutorial.firstmodule-1.0.0 directory to a save
location (away from /usr/NK4/project-modules) before you do the
checkout. We'll reconciliate in a minute, but right now you want to
save your work, for it is about to be overwritten.

Checkout a working-copy of release 1.0.0 from the repository.
youruser@yourmachine:~$ mkdir /usr/NK4 # Cygwin only
youruser@yourmachine:~$ mount d:/NK4 /usr/NK4 # Cygwin only
youruser@yourmachine:~$ mount d:/svn /svn # Cygwin only

youruser@yourmachine:~$ svn checkout \
 file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/release/1.0.0 \
 /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/module.xml
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/resources
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/etc
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/etc/system
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/etc/system/SimpleDynamicImportHook.xml
Checked out revision 3.

You'll now notice that the urn.org.netkernelbook.tutorial.firstmodule-1.0.0
directory is created in /usr/NK4/project-modules and filled with the contents of
release 1.0.0 in the repository.

You'll also notice a .svn directory in
urn.org.netkernelbook.tutorial.firstmodule-1.0.0 and in every subdirectory.
Leave those alone. They are used by Subversion to figure out your changes.

youruser@yourmachine:~$ umount /usr/NK4 # Cygwin only
youruser@yourmachine:~$ umount /svn # Cygwin only

And here is the remark you've been wanting to make for some time now :
What is this sh*t ? All this extra work for a simple module like
firstmodule and we haven't even reached the actual making (and
keeping) of changes yet !

The answer to that is :
Yes.

The answer to that is also :
Yes. It does not get harder for a more complicated module though. This is as
tough as it gets.

The answer to that is ... last but not least :
Yes. I did tell you we were going to do this manually. This should be an
automated process, integrated with the creation of a module. You should feel
by now that this is not an easy matter. Decent version control requires
planning (ahead). Now, go back to "For your understanding" and read the
second point again.

Making and keeping changes
Well, the time has come. If you saved the firstmodule you made in Chapter 2,
copy the content of your saved urn.org.netkernelbook.tutorial.firstmodule-
1.0.0 directory to the directory with the same name under /usr/NK4/project-
modules. Just the content mind you ! You can now remove the saved version.

If you did not make the firstmodule yet, do so now. I'll wait.

If you did everything correctly the module should now work (again). It does ?
Wonderful. Lets move on to keeping the changes in the Subversion repository
as well.

Determine the changes.
youruser@yourmachine:~$ mount d:/NK4 /usr/NK4
youruser@yourmachine:~$ mount d:/svn /svn
youruser@yourmachine:~$ cd /usr/NK4/project-modules/
youruser@yourmachine:~$ cd \
 urn.org.netkernelbook.tutorial.firstmodule-1.0.0/
youruser@yourmachine:~$ svn status
M module.xml
? resources/html
? resources/dpml
M etc/system/SimpleDynamicImportHook.xml

You might think this is not correct, but lets examine what Subversion is telling
us here :

1) File module.xml is modified. It is.
2) Directory resources/html is not in the tree of the repository. It isn't.
3) Directory resources/dpml is not in the tree of the repository. It isn't.
4) File etc/system/SimpleDynamicImportHook.xml is modified. It is.

Yes you say, fine, but I added a file in the html and another one in the dpml
directory as well.

True, but you never told Subversion about the directories, so they are not (yet)
in the repository tree and thus not taken into account. Let us remedy that first.

Tell Subversion about the new directories
youruser@yourmachine:~$ svn add resources/html
A resources/html
A resources/html/hello.html

youruser@yourmachine:~$ svn add resources/dpml
A resources/dpml
A resources/dpml/hello.dpml

youruser@yourmachine:~$ svn status
M module.xml
A resources/html
A resources/html/hello.html
A resources/dpml
A resources/dpml/hello.dpml
M etc/system/SimpleDynamicImportHook.xml

Looks a whole lot better, does it not ? Adding a directory to the tree
automatically adds everything underneath it as well. So we do not have to add
the new files to the tree manually.

Keep the changes (in the repository)
youruser@yourmachine:~$ svn commit -m "firstmodule completed"
Sending etc/system/SimpleDynamicImportHook.xml
Sending module.xml
Adding resources/dpml
Adding resources/dpml/hello.dpml
Adding resources/html
Adding resources/html/hello.html
Transmitting file data ...
Committed revision 4.

And that is all (ok, that was sarcasm). As long as you keep the repository save,
you will always be able to checkout version 1.0.0 of firstmodule again.

Verify Tom's claim
youruser@yourmachine:~$ cd /usr/NK4/project-modules
youruser@yourmachine:~$ rm -rf \
 urn.org.netkernelbook.tutorial.firstmodule-1.0.0

youruser@yourmachine:~$ svn checkout \
file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/release/1.0.0 \
 /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/module.xml
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/resources
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/resources/html
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/resources/html/hello.html
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/resources/dpml
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/resources/dpml/hello.dpml
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-1.0.0/etc
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/etc/system
A /usr/NK4/project-
modules/urn.org.netkernelbook.tutorial.firstmodule-
1.0.0/etc/system/SimpleDynamicImportHook.xml
Checked out revision 4.

Don't take my word for it (try it !), but although you intentionally removed its
directory, firstmodule has been restored and will work correctly once more !

youruser@yourmachine:~$ umount /usr/NK4 # Cygwin only
youruser@yourmachine:~$ umount /svn # Cygwin only

So, to conclude this point here is a small overview:

1) Subversion has two types of changes

• file changes (modify file)
• tree changes (create directory/file, remove directory/file, move

directory/file)

2) After making a change to your working copy you should

• Check your changes
• Inform the repository of any tree-changes.
• Commit or revert your changes

All is not well
You must be thinking I do pretty flawless development. Well, I do not. Actually
I had to restart from scratch three times because I wanted every output I
paste in this book to be exactly what you get on screen.

Since Subversion is pretty quick to create a new revision, that meant I had to
restart every time I made a mistake. If anything this proves Subversion is
pretty good at its job, keeping track of changes (regardless of whether they
are the genuine thing or a mistake).

Restarting from scratch is of course not the way during normal development.
Lets see what you can do when all is not well, we'll start with a small file
change.

Check the first three lines of module.xml
youruser@yourmachine:~$ mount d:/NK4 /usr/NK4
youruser@yourmachine:~$ mount d:/svn /svn
youruser@yourmachine:~$ cd /usr/NK4/project-modules/
youruser@yourmachine:~$ cd \
 urn.org.netkernelbook.tutorial.firstmodule-1.0.0/
youruser@yourmachine:~$ svn status
youruser@yourmachine:~$ head --lines=3 module.xml
<module version="2.0">

 <meta>

Modify module.xml, by putting (with your text-editor) a comment in the second
line.

Check the first three lines of module.xml again
youruser@yourmachine:~$ head --lines=3 module.xml
<module version="2.0">
 <!-- This is an intentional but useless comment -->
 <meta>

Determine your changes
youruser@yourmachine:~$ svn status
M module.xml

youruser@yourmachine:~$ svn diff
Index: module.xml
==
--- module.xml (revision 4)
+++ module.xml (working copy)
@@ -1,5 +1,5 @@
 <module version="2.0">
-
+ <!-- This is an intentional but useless comment -->
 <meta>
 <identity>
 <uri>urn:org:netkernelbook:tutorial:firstmodule</uri>

Revert (undo) the change to module.xml
youruser@yourmachine:~$ svn revert module.xml
Reverted 'module.xml'

Verify the revert to module.xml
youruser@yourmachine:~$ svn diff
youruser@yourmachine:~$ svn status
youruser@yourmachine:~$ head --lines=3 module.xml
<module version="2.0">

 <meta>

youruser@yourmachine:~$ umount /usr/NK4 # Cygwin only
youruser@yourmachine:~$ umount /svn # Cygwin only

Next, we'll do (and undo) some tree-changes.
Create a lib directory for firstmodule
youruser@yourmachine:~$ mount d:/NK4 /usr/NK4
youruser@yourmachine:~$ mount d:/svn /svn
youruser@yourmachine:~$ cd /usr/NK4/project-modules/
youruser@yourmachine:~$ cd \
 urn.org.netkernelbook.tutorial.firstmodule-1.0.0/
youruser@yourmachine:~$ svn status
youruser@yourmachine:~$ mkdir lib

Determine the change
youruser@yourmachine:~$ svn status
? lib

Add the lib-directory to the repository tree
youruser@yourmachine:~$ svn add lib
A lib

Revert the lib-directory
youruser@yourmachine:~$ svn revert lib

Note that the lib-directory is still there ! We only reverted its addition to the
repository tree.

Remove the lib directory
youruser@yourmachine:~$ rmdir lib
youruser@yourmachine:~$ svn status
youruser@yourmachine:~$ umount /usr/NK4 # Cygwin only
youruser@yourmachine:~$ umount /svn # Cygwin only

Enough
That's enough Subversion basic use for this Appendix. Make sure to get the
Subversion book and read at least Chapter 2 – Basic Usage. We'll finish this
Appendix with some advanced stuff ...

Advanced Usage
There's a lot of topics that I could cover here. Again I'll point you to the
Subversion book. There's just two things I still want to cover so you can safely
go on your version control way without much further reading.

Integrating a release/branch into the trunk
Release 1.0.0 of our firstmodule is performing perfectly and you now want all
of it in the trunk so future releases and branches can work with the perfect
code.

Create a working copy of the trunk
youruser@yourmachine:~$ mount d:/NK4 /usr/NK4
youruser@yourmachine:~$ mount d:/svn /svn
youruser@yourmachine:~$ svn checkout \
 file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/trunk/src \
 /home/youruser/trunk-working-copy
A /home/youruser/trunk-working-copy/module.xml
A /home/youruser/trunk-working-copy/resources
A /home/youruser/trunk-working-copy/etc
A /home/youruser trunk-working-copy/etc/system
A /home/youruser/trunk-working-
copy/etc/system/SimpleDynamicImportHook.xml
Checked out revision 4.

Verify release 1.0.0.
youruser@yourmachine:~$ cd /usr/NK4/project-modules/
youruser@yourmachine:~$ cd \
 urn.org.netkernelbook.tutorial.firstmodule-1.0.0/
youruser@yourmachine:~$ svn status
youruser@yourmachine:~$ svn update
At revision 4.

Merge release 1.0.0 into the working copy of the trunk.
youruser@yourmachine:~$ cd /home/youruser/trunk-working-copy
youruser@yourmachine:~$ svn merge –reintegrate \
 file:///svn/project-
modules/urn.org.netkernelbook.tutorial.firstmodule/release/1.0.0
--- Merging differences between repository URLs into '.':
U module.xml
A resources/html
A resources/html/hello.html
A resources/dpml
A resources/dpml/hello.dpml
U etc/system/SimpleDynamicImportHook.xml

youruser@yourmachine:~$ svn commit \
 -m "Merge release 1.0.0 into trunk"
Sending .
Sending etc/system/SimpleDynamicImportHook.xml
Sending module.xml
Adding resources/dpml
Adding resources/dpml/hello.dpml
Adding resources/html
Adding resources/html/hello.html
Transmitting file data ..
Committed revision 5.

youruser@yourmachine:~$ cd ..
youruser@yourmachine:~$ rm -rf trunk-working-copy

You could now actually remove the release 1.0.0 from the repository (with an
svn delete), since it is now contained within the trunk. For a branch this would
be a logical thing to do, a release number retains its validity and since
Subversion is very storage efficient we'll leave it as it is.

youruser@yourmachine:~$ umount /usr/NK4 # Cygwin only
youruser@yourmachine:~$ umount /svn # Cygwin only

Taking a backup of your repository
Is actually a very easy task.

Make hotcopy of repository.
youruser@yourmachine:~$ mount d:/svn /svn
youruser@yourmachine:~$ svnadmin hotcopy /svn
/home/tomgeudens/svn-backup
youruser@yourmachine:~$ svnadmin verify /home/tomgeudens/svn-
backup
* Verified revision 0.
* Verified revision 1.
* Verified revision 2.
* Verified revision 3.
* Verified revision 4.
* Verified revision 5.
youruser@yourmachine:~$ umount /svn # Cygwin only

There, the svn-backup directory is a complete and valid copy of your repository
(and can simply be put in the place of the original if you need to restore). As I
said earlier, I leave it up to you to do something with it.

Not easy
This was not an easy appendix. Not for me to write and probably (despite my
best efforts) not for you to read and follow. The reason is that although version
control is very necessary, it also should be automated as much as possible.

If you have version control in place already for your development, use it. If you
do not I hope this appendix gave you some ideas on how it can be done.

